资源类型

期刊论文 353

会议视频 5

会议信息 1

年份

2024 1

2023 37

2022 31

2021 31

2020 24

2019 20

2018 15

2017 12

2016 14

2015 13

2014 8

2013 25

2012 18

2011 16

2010 24

2009 12

2008 24

2007 12

2006 1

2005 4

展开 ︾

关键词

固体氧化物燃料电池 8

固体废物 4

资源化利用 4

绿色化工 3

SOFC 2

创新 2

固体氧化物电解池 2

柔性机器人 2

气化 2

电解质 2

碳基燃料 2

过程工程研究 2

N-糖组 1

CCD影像 1

CO2 加氢 1

H2O/CO2共电解 1

LED,颜色漂移,光通量衰减,流明衰减 1

Matlab/Simulink仿真 1

N-聚糖 1

展开 ︾

检索范围:

排序: 展示方式:

A multiscale material model for heterogeneous liquid droplets in solid soft composites

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1292-1299 doi: 10.1007/s11709-021-0771-3

摘要: Liquid droplets in solid soft composites have been attracting increasing attention in biological applications. In contrary with conventional composites, which are made of solid elastic inclusions, available material models for composites including liquid droplets are for highly idealized configurations and do not include all material real parameters. They are also all deterministic and do not address the uncertainties arising from droplet radius, volume fraction, dispersion and agglomeration. This research revisits the available models for liquid droplets in solid soft composites and presents a multiscale computational material model to determine their elastic moduli, considering nearly all relevant uncertainties and heterogeneities at different length scales. The effects of surface tension at droplets interface, their volume fraction, size, size polydispersity and agglomeration on elastic modulus, are considered. Different micromechanical material models are incorporated into the presented computational framework. The results clearly indicate both softening and stiffening effects of liquid droplets and show that the model can precisely predict the effective properties of liquid droplets in solid soft composites.

关键词: liquid in solid     soft composite     computational modeling     multiscale model     heterogeneity    

Measurement and correlation of the solid-liquid equilibrium of 2-(

Yanhong SUN, Zhiyong LI, Chuang XIE, Wei CHEN, Cui ZHANG

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 110-115 doi: 10.1007/s11705-013-1316-7

摘要: In this work, the enthalpy of fusion and melting points of 2-( -butyl)-5-methylphenol (2B5MP) and 2-( -butyl)-4-methylphenol (2B4MP) were measured by differential scanning calorimetry (DSC). The binary solid-liquid equilibrium (SLE) of both compounds were predicted by integrated computer aided system (ICAS) and measured by DSC. The corresponding eutectic molar composition is 0.6998 and the eutectic temperature is 281.96 K. The quasi-static heat capacities of 2B5MP and 2B4MP were evaluated by stochastic temperature modulation DSC technique (TOPEM). The SLE experimental data were correlated using the Margules, Wilson, and non-random two liquid (NRTL) equations and a good agreement between measurement and calculation could be obtained.

关键词: solid-liquid equilibrium (SLE)     eutectic     integrated computer aided system (ICAS)     TOPEM     correlation    

Flow behavior of liquid-solid coupled system of piezoelectric micropump

LU Lijun, WU Jiankang

《机械工程前沿(英文)》 2008年 第3卷 第1期   页码 50-54 doi: 10.1007/s11465-008-0003-8

摘要: This paper employs a shallow water model and the finite element method to approximate periodical flows of a micropump to a two-dimensional thickness-averaged flow. A liquid-solid coupled system equation of the micropump is presented. Through the mode analysis of the liquid-solid coupled system, the first-order natural frequency, diaphragm vibration shape and amplitude-frequency relationship are obtained. The vibration response of the diaphragm is calculated when an external electric field is applied. Based on the thickness-averaged flow equation, the periodical flow of the micropump is studied using the finite volume method to investigate the flow behavior and flow rate-frequency characteristics. Numerical results indicate that an optimal working frequency can be obtained, at which the flow rate of the micropump achieves the maximum when the external electric voltage is fixed.

关键词: amplitude-frequency relationship     first-order     micropump     diaphragm vibration     electric    

Detection of geosmin and 2-methylisoborneol by liquid-liquid extraction-gas chromatograph mass spectrum(LLE-GCMS) and solid phase extraction-gas chromatograph mass spectrum (SPE-GCMS)

MA Xiaoyan, CHEN Beibei, LI Qingsong, ZHANG Qiaoli, GU Guofen

《环境科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 286-291 doi: 10.1007/s11783-007-0048-7

摘要: Two sample preparation methods were introduced and compared in this paper to establish a simple, quick and exact analysis of geosmin and 2-methylisoborneol. LC-18 column was employed in solid phase extraction (SPE), 1.0 mL of hexane was adopted in liquid-liquid extraction (LLE), and the extracts were analyzed by gas chromatograph mass spectrum (GCMS) in selected ion mode. Mean recoveries of SPE were low for 2-methylisoborneol (2-MIB) and geosmin (GSM) with values below 50%. For LLE, the recoveries were satisfyingly above 50% for 2-MIB and 80% for GSM. Detection limits of the LLE method were as low as 1.0 ng/L for GSM and 5.0 ng/L for 2-MIB. A year-long investigation on odor chemicals of drinking water in Shanghai demonstrated that in the summer, there was a serious odor problem induced by a high concentration of 2-MIB. The highest concentration of 152.82 ng/L appeared in July in raw water, while GSM flocculation was minimal with concentrations below odor threshold.

关键词: summer     flocculation     simple     Shanghai     spectrum    

Ultrafast solid-liquid-vapor phase change of a thin gold film irradiated by femtosecond laser pulses

Jing HUANG, Yuwen ZHANG, J. K. CHEN, Mo YANG

《能源前沿(英文)》 2012年 第6卷 第1期   页码 1-11 doi: 10.1007/s11708-012-0179-9

摘要: Effects of different parameters on the melting, vaporization and resolidification processes of thin gold film irradiated by femtosecond pulses and pulse train were systematically studied. The classical two-temperature model was adopted to depict the non-equilibrium heat transfer in electrons and lattice. The melting and resolidification processes, which was characterized by the solid-liquid interfacial velocity, as well as elevated melting temperature and depressed solidification temperature, was obtained by considering the interfacial energy balance and nucleation dynamics. Vaporization process which leads to ablation was described by tracking the location of liquid-vapor interface with an iterative procedure based on energy balance and gas kinetics law. The parameters in discussion included film thickness, laser fluence, pulse duration, pulse number, repetition rate, pulse train number, etc. Their effects on the maximum lattice temperature, melting depth and ablation depth were discussed based on the simulation results.

关键词: melting     evaporation     nucleation dynamics     nanoscale heat transfer    

第14届国际气液和气液固反应器工程大会(International Conference on Gas-Liquid and Gas-Liquid-Solid Reactor Engineering)

会议日期: 2019年05月30日

会议地点: 中国/广西/桂林

主办单位: 中国科学院过程工程研究所,中国颗粒学会

A computational toolbox for molecular property prediction based on quantum mechanics and quantitative structure-property relationship

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 152-167 doi: 10.1007/s11705-021-2060-z

摘要: Chemical industry is always seeking opportunities to efficiently and economically convert raw materials to commodity chemicals and higher value-added chemical-based products. The life cycles of chemical products involve the procedures of conceptual product designs, experimental investigations, sustainable manufactures through appropriate chemical processes and waste disposals. During these periods, one of the most important keys is the molecular property prediction models associating molecular structures with product properties. In this paper, a framework combining quantum mechanics and quantitative structure-property relationship is established for fast molecular property predictions, such as activity coefficient, and so forth. The workflow of framework consists of three steps. In the first step, a database is created for collections of basic molecular information; in the second step, quantum mechanics-based calculations are performed to predict quantum mechanics-based/derived molecular properties (pseudo experimental data), which are stored in a database and further provided for the developments of quantitative structure-property relationship methods for fast predictions of properties in the third step. The whole framework has been carried out within a molecular property prediction toolbox. Two case studies highlighting different aspects of the toolbox involving the predictions of heats of reaction and solid-liquid phase equilibriums are presented.

关键词: molecular property     quantum mechanics     quantitative structure-property relationship     heat of reaction     solid-liquid phase equilibrium    

An efficient resin for solid-phase extraction and determination by UPLCMS/MS of 44 pharmaceutical personal

Feng Zhu, Zhijian Yao, Wenliang Ji, Deye Liu, Hao Zhang, Aimin Li, Zongli Huo, Qing Zhou

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-020-1228-y

摘要: A hydrophilic resin (GCHM) was facile synthesis and characterized. Average absolute recovery of GCHM (75.6%) performs better than Oasis® HLB. Detection limits of method (SPE-UPLC-MS/MS) ranged between 0.03 and 0.6 ng/L. 22 PPCPs were determined in environmental waters ranging from 0.5 to 1590 ng/L. In this study, a hydrophilic resin named GCHM was fabricated based on poly(N-vinyl pyrrolidone-co-divinylbenzene), characterized, and applied as a solid-phase extraction (SPE) material. Up to 44 pharmaceuticals and personal care products (PPCPs) belonging to 10 classes were recovered in environmental water samples. Different variables affecting extraction, such as adsorbent amount, sample pH, and loading speed, were optimized. Under optimal conditions, the average absolute recovery of 44 PPCPs was 75.6% using GCHM, indicating a better performance than the commercial Oasis® HLB. SPE with home-made hydrophilic polymeric sorbent followed by ultra-performance liquid chromatography and tandem mass spectrometry was validated, and the method achieved good linearity (r2>0.991, for all analytes). In addition, the method detection limits of target compounds ranged from 0.03 to 0.6 ng/L. The developed method was applied to determine PPCPs in 10 environmental water samples taken from the Yangtze River, Huaihe River, and Taihu Lake, 1 groundwater sample from Changzhou in Jiangsu Province, 1 wastewater sample from Xiamen and 2 seawater samples from the Jiulong River in Fujian Province, China. In these samples, 22 compounds were determined at levels ranging from 0.5 to 1590 ng/L.

关键词: Hydrophilic resin     Solid phase extraction     Pharmaceuticals and personal care product     Ultra-performance liquid chromatography and tandem mass spectrometry     Environmental water    

Many-body dissipative particle dynamics simulation of wetting phenomena

Ying ZHAO, Ye YUE, Xianren ZHANG, Shuangyang LI, Atul SAJJANHAR,

《化学科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 280-282 doi: 10.1007/s11705-009-0278-2

摘要: With the development of the simulation of particle dynamics, the traditional dissipative particle dynamics (DPD) method can not satisfy the needs of research in static or dynamic wetting phenomena. However, the Many-body DPD approach extends the ability of the traditional method to simulate the interface between solid and liquid or some other situation. In this paper, we propose a Many-body DPD program to simulate the solid-liquid interface and get satisfactory results.

关键词: development     satisfactory     traditional dissipative     phenomena     solid-liquid interface    

Flow boiling heat transfer in circulating fluidized bed

Xiaoguang REN , Jiangdong ZHENG , Sefiane KHELLIl , Arumemi-Ikhide MICHAEL ,

《能源前沿(英文)》 2009年 第3卷 第1期   页码 85-89 doi: 10.1007/s11708-008-0067-5

摘要: In order to enhance heat transfer and mitigate contamination in the boiling processes, a new type of vapor-liquid-solid (3-phase) circulating fluidized bed boiling system has been designed, combining a circulating fluidized bed with boiling heat transfer. Experimental results show an enhancement of the boiling curve. Flow visualization studies concerning flow hydrodynamics within the riser column are also conducted whose results are presented and discussed.

关键词: vapor-liquid-solid three phase     flow boiling heat transfer     circulating fluidized bed    

Study of the robustness of a low-temperature dual-pressure process for removal of CO

Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli

《化学科学与工程前沿(英文)》 2018年 第12卷 第2期   页码 209-225 doi: 10.1007/s11705-017-1688-1

摘要: The growing use of energy by most of world population and the consequent increasing demand for energy are making unexploited low quality gas reserves interesting from an industrial point of view. To meet the required specifications for a natural gas grid, some compounds need to be removed from the sour stream. Because of the high content of undesired compounds (i.e., CO ) in the stream to be treated, traditional purification processes may be too energy intensive and the overall system may result unprofitable, therefore new technologies are under study. In this work, a new process for the purification of natural gas based on a low temperature distillation has been studied, focusing on the dynamics of the system. The robustness of the process has been studied by dynamic simulation of an industrial-scale plant, with particular regard to the performances when operating conditions are changed. The results show that the process can obtain the methane product with a high purity and avoid the solidification of carbon dioxide.

关键词: CO2 capture     innovative process     cryogenic distillation     dynamic simulation     solid-liquid-vapor equilibrium    

Chemical probe systems for assessing liquidliquid mixing efficiencies of reactors

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1323-1335 doi: 10.1007/s11705-022-2275-7

摘要: Liquid–liquid mixing, including homogeneous and heterogeneous mixing, widely exists in the chemical industry. How to quantitatively characterize the mixing performance is important for reactor assessment and development. As a convenient and direct method for mixing characterization, the chemical probe method uses some special test reactions to characterize the mixing results. Here, the working principle and selection requirements of this method are introduced, and some common chemical probe systems for homogeneous and heterogeneous mixing processes are reviewed. The characteristics and applications of these systems are illustrated. Finally, the development of the new system is proposed.

关键词: mixing     chemical probe     liquid–liquid     heterogeneous    

Microfluidic production of liposomes through liquidliquid phase separation in ternary droplets

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 1017-1022 doi: 10.1007/s11705-021-2118-y

摘要: Liposomes, the self-assembled phospholipid vesicles, have been extensively used in various fields such as artificial cells, drug delivery systems, biosensors and cosmetics. However, current microfluidic routes to liposomes mostly rely on water-in-oil-in-water double emulsion droplets as templates, and require complex fabrication of microfluidic devices, and tedious manipulation of multiphase fluids. Here we present a simple microfluidic approach to preparing monodisperse liposomes from oil-in-water droplets. For demonstration, we used butyl acetate-water-ethanol ternary mixtures as inner phase and an aqueous solution of surfactants as outer phase to make oil-in-water droplets, which can evolve into water-in-oil-in-water double emulsion droplets by liquid–liquid phase separation of ternary mixtures. Subsequently, the resultant water-in-oil-in-water droplets underwent a dewetting transition to form separated monodisperse liposomes and residual oil droplets, with the assistance of surfactants. The method is simple, does not require complex microfluidic devices and tedious manipulation, and provides a new platform for controllable preparation of liposomes.

关键词: microfluidics     liposomes     ternary droplets     phase separation    

Energy distribution between liquid hydrogen and liquid oxygen temperatures in a Stirling/pulse tube refrigerator

《能源前沿(英文)》 2023年 第17卷 第4期   页码 516-526 doi: 10.1007/s11708-022-0844-6

摘要: A two-stage gas-coupled Stirling/pulse tube refrigerator (SPR), whose first and second stages respectively involve Stirling and pulse tube refrigeration cycles, is a very promising spaceborne refrigerator. The SPR has many advantages, such as a compact structure, high reliability, and high performance, and is expected to become an essential refrigerator for space applications. In research regarding gas-coupled regenerative refrigerator, the energy flow distribution between the two stages, and optimal phase difference between the pressure wave and volume flow, are two critical parameters that could widely influence refrigerator performance. The effects of displacer displacement on the pressure wave, phase difference, acoustic power distribution, and inter-stage cooling capacity shift of the SPR have been investigated experimentally. Notably, to obtain the maximum first-stage cooling capacity, an inflection point in displacement exists. When the displacer displacement is larger than the inflection point, the cooling capacity could be distributed between the first and second stages. In the present study, an SPR was designed and manufactured to work between the liquid hydrogen and liquid oxygen temperatures, which can be used to cool small-scale zero boil-off systems and space detectors. Under appropriate displacer displacement, the SPR can reach a no-load cooling temperature of 15.4 K and obtain 2.6 W cooling capacity at 70 K plus 0.1 W cooling capacity at 20 K with 160 W compressor input electric power.

关键词: Stirling/pulse tube refrigerator     displacer displacement     space application     phase shift     energy distribution    

Plasma spray coating on interconnector toward promoted solid oxide fuel cells and solid oxide electrolysis

《能源前沿(英文)》 doi: 10.1007/s11708-023-0901-9

摘要: Interconnector is a critical component to construct solid oxide cells (SOCs) stack. Oxidation of metallic interconnectors and Cr poisoning caused by oxidation are important factors that lead to long-term performance degradation of SOCs. Coating on the interconnector surface is an important approach to inhibit the oxidation and Cr migration of the interconnector. Herein, (La0.75Sr0.25)0.95MnO3–δ (LSM) and Mn1.5Co1.5O4 (MCO) are used to fabricate the coatings of interconnector. Two advanced thermal spray technology, atmospheric plasma spraying (APS) and low-pressure plasma spray (LPPS), are adopted for the coating preparation. The electrochemical performance, rising and cooling cycle stability, and Cr diffusion inhibition performance of the coatings are tested and evaluated. The result indicates that MCO can generate more uniform and denser coatings than LSM. In addition, MCO coatings prepared by LPPS shows the best electrochemical performance, rising and cooling cycle stability, and Cr diffusion inhibition. The initial area specific resistance (ASR) is 0.0027 Ω·cm2 at 800 °C. After 4 cooling cycle tests, the ASR increases to 0.0032 Ω·cm2 but lower than other samples. Meanwhile, the relative intense of Cr at the interface of SUS430 with MCO coatings fabricated by LPPS is lower than that of MCO fabricated by APS after 4 rising and cooling cycle operations, showing more favorable Cr diffusion inhibition performance.

关键词: interconnector coating     plasma spray     electrochemical performance     Cr diffusion inhibition     solid oxide cells (SOCs)    

标题 作者 时间 类型 操作

A multiscale material model for heterogeneous liquid droplets in solid soft composites

期刊论文

Measurement and correlation of the solid-liquid equilibrium of 2-(

Yanhong SUN, Zhiyong LI, Chuang XIE, Wei CHEN, Cui ZHANG

期刊论文

Flow behavior of liquid-solid coupled system of piezoelectric micropump

LU Lijun, WU Jiankang

期刊论文

Detection of geosmin and 2-methylisoborneol by liquid-liquid extraction-gas chromatograph mass spectrum(LLE-GCMS) and solid phase extraction-gas chromatograph mass spectrum (SPE-GCMS)

MA Xiaoyan, CHEN Beibei, LI Qingsong, ZHANG Qiaoli, GU Guofen

期刊论文

Ultrafast solid-liquid-vapor phase change of a thin gold film irradiated by femtosecond laser pulses

Jing HUANG, Yuwen ZHANG, J. K. CHEN, Mo YANG

期刊论文

第14届国际气液和气液固反应器工程大会(International Conference on Gas-Liquid and Gas-Liquid-Solid Reactor Engineering)

2019年05月30日

会议信息

A computational toolbox for molecular property prediction based on quantum mechanics and quantitative structure-property relationship

期刊论文

An efficient resin for solid-phase extraction and determination by UPLCMS/MS of 44 pharmaceutical personal

Feng Zhu, Zhijian Yao, Wenliang Ji, Deye Liu, Hao Zhang, Aimin Li, Zongli Huo, Qing Zhou

期刊论文

Many-body dissipative particle dynamics simulation of wetting phenomena

Ying ZHAO, Ye YUE, Xianren ZHANG, Shuangyang LI, Atul SAJJANHAR,

期刊论文

Flow boiling heat transfer in circulating fluidized bed

Xiaoguang REN , Jiangdong ZHENG , Sefiane KHELLIl , Arumemi-Ikhide MICHAEL ,

期刊论文

Study of the robustness of a low-temperature dual-pressure process for removal of CO

Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli

期刊论文

Chemical probe systems for assessing liquidliquid mixing efficiencies of reactors

期刊论文

Microfluidic production of liposomes through liquidliquid phase separation in ternary droplets

期刊论文

Energy distribution between liquid hydrogen and liquid oxygen temperatures in a Stirling/pulse tube refrigerator

期刊论文

Plasma spray coating on interconnector toward promoted solid oxide fuel cells and solid oxide electrolysis

期刊论文